

Discovering unknown unknowns in parking data by Formal Concept Analysis based Data Mining

Rick Warnar | DENION Prof. Dr. Guido Dedene | KU Leuven / UVA

Process Improvement: What's up ?

- A process is a series of steps to achieve a GOAL.
- Each step should deliver added-value.
- The process should preferably achieve the goal in ONE pass.

► The 'First-time Pass Rate' is an important KPI !

 Processes should be documented, enforced and audited. Ignoring this results in unknown process variations on the work floor...

Discovery versus Mining

Mining

= Searching for the 'main'/average results for a 'known' set of questions (unknowns)

Discovery

= Try to detect the 'exceptions', out of the box elements, typically unknown unknowns...

Long, Letitia A., Activity Based Intelligence: Understanding the Unknown, Intelligence: Journal of U.S. Intelligence Systems, Vol 20(2) Fall/Winter 2013, pp 7 – 15

What is a 'concept' ?

Taste: Sweet / Sour, Shape: Round / Long, Color: Red/Green/Yellow, Texture: Smooth/Bumpy

		Red	Green	Yellow	Round	Long	Sweet	Sour	Smooth	Bumpy
Ŏ	Apple	X	X	X	X		X	X	X	
	Lemon			X	X			X		X
\rightarrow	Banana			X		X	X		X	
ŵ	Strawberries	X			X		X			X
	Grapes	X	X		X		X	X	X	
ě	Pear			X		X	X		X	

Based on : Wille R., "Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies', In Formal Concept Analysis, Eds B. Ganter et al., LNAI 3626, pp1-33, (2005)

What is a 'concept' ?

Taste: Sweet / Sour, Shape: Round / Long, Color: Red/Green/Yellow, Texture: Smooth/Bumpy

		Red	Green	Yellow	Round	Long	Sweet	Sour	Smooth	Bumpy
Ŏ	Apple	х	X	X	X		X	X	X	
	Lemon			X	X			X		X
1	Banana			X		X	X		X	
Ö	Strawberries	Х			X		X			X
9.6 A	Grapes	Х	X		X		X	X	X	
Č	Pear			X		X	X		X	

Every 'rectangle' of crosses is A 'concept'...! A1 = ({Apple, Banana, Pear} , {Yellow, Sweet, Smooth})

Concepts are ordered...

		Red	Green	Yellow	Round	Long	Sweet	Sour	Smooth	Bumpy
Ŏ	Apple	х	х	х	х		х	х	х	
	Lemon			х	x			х		х
1	Banana			х		х	х		х	
ò	Strawberries	х			x		х			x
	Grapes	х	х		x		х	х	х	
Č	Pear			х		х	х		х	

A2 = ({Banana, Pear} , {Yellow, Long, Sweet, Smooth})

A2 is 'more special': less objects, but more attributes !

		Red	Green	Yellow	Round	Long	Sweet	Sour	Smooth	Bumpy
Ŏ	Apple	х	х	х	х		х	х	х	
	Lemon			х	х			х		х
1	Banana			х		х	x		х	
Ó	Strawberries	x			х		х			х
885°	Grapes	x	х		х		X	х	х	
Ă	Pear			х		х	x		х	

A Simplified Parking Rights Enforcement Process

- 1: Register the vehicle (incl. vehicle-ID) parked at a particular time & location
- 2: Search valid parking right for that vehicle-ID at the observed time & location
- 3: Valid parking right (and assume also it is correctly paid)
- 4: No valid (or nearly-valid) parking right found
- 5: Search additional information for payment (e.g. calculate the additional parking fine)
- 6: Issue payment request
- 7: End

Formal Concept Analysis Use case 1...

DISCOVER EARLY WARNING/REASONS for violations of parking rights...

- Consider 'INVALID PARKING RIGHTS' as one of the attributes in the concept lattice.
- Go in Discovery and detect the attributes that neighbor in the lattice to invalid rights.
- Eliminate stepwise the 'known' attributes and add (if needed) additional information attributes
- This technique has been very powerful in the context of POLICE Cases

Poelmans, J., Elzinga, P., Viaene, S., Van Hulle, M. & Dedene G. (2009). Gaining insight in domestic violence with emergent self organizing maps, *Expert systems with applications, 36,* (9), 11864 – 11874.

Use Case 1 example in Police Case: Discovery of profile of 'loverboy'...

Formal Concept Analysis Use case 2...

IDENTIFY Potential Value Leaks in the Process

- Investigate the Process for 'not-normal' form (e.g. focus on many-to-many transitions).
- Obtain normalized Process forms by means of Process Discovery (FCA on Process Logging Data).
- Investigate the non-normalized transitions in terms of service/information imperfections and Value Leaks.

Dedene G., Warnar R., Peters E., Viaene S., Mercado C. (2015), Assessing the Value of Process Improvement by means of Service Imperfections and Value Leaks: The case of a large scale Municipality Contact Center, *accepted for INFORMS SERVICE SCIENCE 2015.*

Formal Concept Analysis Use case 3...

- Construct and validate large scale concept models by combining FCA and Unified Modeling (UML) for Business Verticals (such as parking).
- So far, conceptual modeling for mobility/parking has not been applied yet extensively, because of the complexity of the Business. FCA provides now a scalalble solution !

Chang J., Fong-Gee Y. (2012), Information analysis of maintenance and rehabilitation activities for a road system using formal concept analysis (FCA), ISCCBE 14th International Conference on Computing in Civil and Building Engineering, Moscow, Russia, 2012

- The discovered models are scalable, consistent and automatically in normal form...

65

ANY QUESTIONS ...?